WBG-Based High Output Power Electronics

Daniel J. Radack
Institute for Defense Analyses

Outline

- Applications/needs for high output power electronics
- High Power Solid-State Electronics
 Program Goals and Accomplishments
 - FY97 FY00
 - Managed by E.R. Brown then D.J. Radack
- WBG Technology Opportunities for advanced power applications

High Output Power Electronics Application Space

- Power Distribution and Conversion
- Propulsion/motion
 n control
- Pulse Power Switching
- One technology solution - WBGS

Power

Electric Combat Vehicle

Needs to be light!

Active armor

Active suspension

EM Weapons

Energy efficiency

- Traction motor controller: >300kW, >2kV,
 >750A rms, >25kHz, 150 degrees C
- EM weapons: >200kJ energy, 40kV, di/dt > 10kA/us, 100kHz, low losses
- HP Inverter: 10MW for 0.1-0.5s, 10kV, 3kA, 25kHz, compact size

Ship Power Application

Motor Controller is key – SiC will increase performance and efficiency with smaller size

Power Electronics for Motors

Motor performance depends on drive electronics – SiC power devices will enable high performance motor drives

Outline

- Applications/needs for high output power electronics
- High Power Solid-State Electronics
 Program Goals and Accomplishments
 - FY97 FY00, joint with EPRI
 - Managed by E.R. Brown then D.J. Radack
- WBG Technology Opportunities for advanced power applications

Silicon Carbide Power Electronics

- (2) 3X higher thermal conductivity and larger band gap energy than Si
- (3) 10X faster switching speed over Si, near zero reverse recovery
- (4) 10-50X reduction in complete HV circuit

Silicon Carbide material properties a match for high power electronics – bulk electronic materials now available!

High Power Solid-State Program Accomplishments

- Program Duration: FY97-00, \$30M (\$12M cost share from EPRI)
 - Industry, academia, gov't participation in program
 - Project summaries and program participant final briefings are on MTO web site in the "High Power Solid-State Electronics" Archives
 - TTO CHPS App., DSO SiC materials and AF Title 3
- Developed and transferred high yield unit process technologies for SiC power devices (diodes and thyristors)
 - epitaxial layer growth, doping, contacts, oxides
- Demonstrated feasibility of fabricating SiC high power electronic devices in industrial fabrication lines (diodes, FETs, thyristors)
- Demonstrated assembly and packaging technology for 1kW/cm² SiC power devices first ever all SiC electronic assemblies
 - Fabricated die for TTO CHPS

Progress in SiC Power Electronics

Selected SiC Device Accomplishments (FY00):

- 6 kV diodes
- Yielded hundreds of >5kV diodes
- >100 A diode assembly
- 3 kV GTOs
- 69 A conduction / 11 A turn-off GTOs

HP Diodes Show >70% Yield

Reverse Voltage @ <50uA

- -Strong dependence on epi quality
- -Reasonable (40%) yields even at 2 mm

High Power Testing

Minimal Diode Reverse Recovery Charge!!!

Electrothermal Modeling

Circumferential Cooling

- Circum cooling with CuW Encapsulated pyrolytic graphite
- Maximum Temperature

Completed Coupled Electrothermal Models for SiC Devices, Excellent Agreement to Experimental Data

First Operational All SiC Motor Drive

SiC Microinverter operating at 100kHz, 100V, 0.75 amp confirms SiC promise and models

MTO SiC Devices Used For First Ever Demo of all-SiC Power Electronics Circuit

Outline

- Applications/needs for high output power electronics
- High Power Solid-State Electronics Program Goals and Accomplishments
 - FY97 FY00
 - Managed by E.R. Brown then D.J. Radack
- WBG Technology Opportunities for advanced power applications
 - Increase chip area
 - MOS structures

SiC Electronic Materials for Power

4H SiC is best overall choice for high voltage and current

New Direction: Increase Usable Chip Area for High Power Devices

Defect free Cm² area chips necessary for yielding high current, high voltage devices

Material Issues for High Power

Challenges: Large Defect Free Areas (cm²) for HP Devices

SiC Wafer Defects

Total Defect Density >> Micropipe Density

High Temperature SiC CVD for WBG Epi

Need ~ $500 \mu m$ (@1 x 10^{14} cm^{-3}) Epi Layer for 25 kV blocking voltage.

SiC Epi

Current Epi Growth Rate Limitations:

CVD Temp up to 1600°C

growth rates ~ 3.5 µm/h

500 µm in >140 hours!

High Temperature Epi:

Temp up to 2250°C growth rates ~ 100 µm/h 500 µm in ~ 5 hours or less! Halide-assisted, low T growth

Technical Challenges:

- Component Degradation
- Impurity/Dopant Control
- Morphology & Defects
- Pre-cracking of Precursors

High Temperature Epi Needed for High Growth Rate of WBG

Oxy-Nitride Process Breakthrough for SiC Oxides

Oxy-Nitride Process Proven To Reduce Surface States and Increase Channel Mobility up to 5X to 90cm²/V-s

Ferroelectric Gate Insulators

Lithium Niobate, Lithium Tantalate, Li Gallate have promising properties:

100-1000X inversion charge density

Low field in dielectric

Normally Off

Positive temp. coeff.

Challenges:

- Growth/deposition with low interface states for high V Temp. stability
- -Breakdown field

High Voltage Ferroelectrics Can Eliminate Thermal Oxides

Gas Immersion Laser Doping

Doping Results

Technology Proven with Silicon FETs – Achieving doping above solid-state diffusion limit using laser processing

Integration for WBG Electronics

Integration and Thermal Management Is Critical for Realizing WBG Device and Circuit Benefits at System Level

Technology Opportunities for R&D in WBG Power Electronics

Materials and Processes

- Defect reduction and mitigation
- Large areas for high current, high voltage
- Oxides, epi layers, doping activation, mobility, etc.

Devices

- MW and beyond switches
- Novel triggering and commutation
- Defeat realtime defect growth and propagation issues (minority carrier injection effects)
- Integrated Structures and Thermal Management

Applications

- Compelling!